fMRI 101, Part 3

Geoffrey K Aguirre, MD, PhD

Two basic types of neuroimaging studies (and a third that combines the two)

The key question to ask for each

which brain areas correspond to an isolated behavior?

TIME

- Why we love
- What your brain looks like on faith
- What makes us moral
- When worry hijacks the brain
- How V
 Marke
 Marke
 A menopausal hot flash
 increases activity within the
 insula
- Inside the grieving brain
- It feels good and everybody does it [scratching]
- Mind reading is now possible
- This is your brain on optimism
- Hot flashes [fMRI of menopause]

isolate behavior by subtracting conditions

Spouse vs. Friend over time

Spouse vs. Friend over time

Forward inference

what if the "subtraction" includes other mental states?

The brain area for "working memory"?

Manipulating mental operations

Task versus cognitive process

delayed vs. immediate match to sample

matching rotated vs. nonrotated figures working memory

mental rotation

pictures of spouse vs. pictures of friends

romantic love

Imaging versus lesion inference

This brain area is necessary for the perception of love

Imaging versus lesion inference

This brain area is necessary for the perception of love

Imaging and lesion inferences are largely independent

relate variations in the behavior to variations in neural response

relate individual differences in behavior to brain differences

Forward inference

how was the behavior isolated?

Does hearing a bad joke induce physical pain?

Focal reverse inference

use local brain activity to identify mental states or emotions a situation evokes

TIME

- Why we love
- What your brain looks like on faith
- What makes us moral
- When worry hijacks the brain
- How Marke Scratching evokes a sense of pleasure because it decreases memory of pain
- Inside the grieving brain
- It feels good and everybody does it [scratching]
- Mind reading is now possible
- This is your brain on optimism
- Hot flashes [fMRI of menopause]

Does hearing a bad joke induce physical pain?

Focal reverse inference

use local brain activity to identify mental states or emotions a situation evokes

Does hearing a bad joke induce physical pain?

Focal reverse inference

what if more than one state can activate a brain region?

"Boring neuroscience"

relate variations in stimulus properties or information processing to response

Focal reverse inference

how strong is the association between local brain activity and the assumed evoked behavior?

Goal: brain pattern detects lies

LIAR

TIME

- Why we love
- What your brain looks like on faith
- What makes us moral
- When worry hijacks the brain
- How W • Marke You are lying or telling the truth

- Inside the grieving brain
- It feels good and everybody does it [scratching]
- Mind reading is now possible
- This is your brain on optimism
- Hot flashes [fMRI of menopause]

Goal: brain pattern detects lies

LIAR

Step 1: forward inference

train a computer to learn the pattern of activity evoked by telling truth

Step 1: forward inference

train a computer to learn the pattern of activity evoked by telling lies

Step 2: reverse inference

Measure brain activity to discover if a new statement is a truth or lie

The limitation

Multi-voxel classification can the classification be generalized beyond the training context?

Forward inference

determine which brain region is associated with an isolated behavior

Focal reverse inference

use localized brain activity to determine which mental states are evoked by a complex behavior

Multi-voxel classification

use distributed patterns of brain activity to predict which mental state is being experienced

Forward inference

how was the behavior isolated?

Focal reverse inference

how strong is the association between local brain activity and the assumed evoked behavior?

Multi-voxel classification

can the classification be generalized beyond the training context?

Inferences in neuroimaging

State question in terms of neural activity:

 Can my design produce bulk changes in neural activity detectable with fMRI?

Make the inferential framework clear:

- What is the cognitive process and what is the task?
- Am I looking for the neural location of a cognitive process? It's computational implementation? Or am I studying the task itself?

Be cautious of inference across populations:

- Are my subjects impaired at the very cognitive process I seek to study?
- Could the populations differ in hemodynamic instead of neural physiology?