How Much Can We Boost IQ and Scholastic Achievement?

ARTHUR R. JENSEN

University of California, Berkeley

Arthur Jensen argues that the failure of recent compensatory education efforts to produce lasting effects on children’s IQ and achievement suggests that the premises on which these efforts have been based should be reexamined.
The Nature-Nurture Tension in Cognitive Development and Academic Achievement

Intelligence is mostly a matter of heredity, as we know from studies of identical twins reared apart. . . . Social programs that seek to raise I.Q. are bound to be futile. Cognitive inequalities, being written in the genes, are here to stay, and so are the social inequalities that arise from them. What I have just summarized, with only a hint of caricature, is the hereditarian view of intelligence.

Identical Twins, Separated at Birth & Reared Apart

Fig. 1. The absolute value of the MZA within-pair IQ difference as a function of the natural logarithm of pair contact in weeks. The horizontal lines are the expected absolute IQ difference between two randomly selected individuals, the observed average MZA absolute difference, and the expected IQ difference between two testings of the same individual.
Rescue from extreme neglect, randomized timing

Table: Cognitive Recovery in Socially Deprived Young Children: The Bucharest Early Intervention Project

<table>
<thead>
<tr>
<th>Age at placement</th>
<th>42 months (BSID-II)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>SE</td>
</tr>
<tr>
<td>0–18 months</td>
<td>14</td>
<td>94.4</td>
<td>11.9</td>
<td>3.2</td>
</tr>
<tr>
<td>18–24 months</td>
<td>16</td>
<td>89.0</td>
<td>11.3</td>
<td>2.8</td>
</tr>
<tr>
<td>24–30 months</td>
<td>22</td>
<td>80.1</td>
<td>13.3</td>
<td>2.8</td>
</tr>
<tr>
<td>30+ months</td>
<td>9</td>
<td>79.7</td>
<td>17.1</td>
<td>5.7</td>
</tr>
</tbody>
</table>
The Gene-Environment Paradox

• “We know that potent environmental factors exist; [Classical Behavioral Genetics] suggests that they should not exist. How can this paradox be resolved?”
 – Dickens & Flynn (2001)
Nonlinearities in Environmental Potency?

- “normal development does occur in a wide variety of human environments, but not in those lacking ‘average expectable’ conditions under which the species has evolved”

Figure 4. Hypothetical threshold model describing relationship between environment and IQ.
Estimates in the General Population (Pedigree Analysis, Twins Reared Together)

Meta-analysis of the heritability of human traits based on fifty years of twin studies

Tinca J C Polderman, Beben Benyamin, Christiaan A de Leeuw, Patrick F Sullivan, Arjen van Bochoven, Peter M Visscher & Danielle Posthuma
How Potent is the Environment in the “Normal” Range Observed in the USA?

• Goal: Test and probe socioeconomic and educational causation in a genetically-informed cohort study using a population-based sample measured on a comprehensive set of cognitive and achievement outcomes — Do inferences from different approaches agree?
Overview

I. Introduction to the Texas Twin Project

II. Children’s cognitive and academic skills in environmental context

III. Use natural experiments to estimate causal effects of schooling on cognitive abilities the same sample for which biometric decompositions are estimated

- Are the more shared environmental phenotypes more amenable to schooling effects?
A resource for genetically-informed research on environmental causation in child development (directed with Paige Harden).

Tiny Twins
- Ages 0-5 yrs
- Parent survey
- Focus: Early cognitive skills, socioemotional functioning, parenting
- Repeated Measures, for Observations > 1,400

(Tiny Twins, N ≈ 600)

Twin Brains
- Grades 3-8 (≈ages 8-13 yrs)
- Parent/child survey, in-lab testing, school records
- Focus: Cognitive abilities, executive functions, “noncognitive skills” & academic achievement
- Salivary Hormones (reactive and diurnal)
- Hair Hormones
- DNA
- MRI on N ≈ 150

(Twin Brains, N > 1,000)

Risky Business
- High School (≈ages 14-19 yrs)
- Parent/child survey, in-lab testing, school records
- Focus: Cognitive ability, sensation seeking, delinquency, substance use
- Salivary Hormones (diurnal)
- Hair Hormones
- DNA

(Risky Business, N > 1,000)

Racially & Socioeconomically Diverse: ≈ 60% White, 15% Hispanic, 8% Black
≈ One Third of Families have received needs-based public assistance (e.g. food stamps)
Family Context
(6 year event history)
Neighborhood Characteristics

\(n = 239 \) Census tracts

[Graph showing various characteristics with a map on the right]
School Characteristics

\(n = 230 \text{ schools} \)
Overview

I. Introduction to the Texas Twin Project
II. Children’s cognitive and academic skills in environmental context
III. Use natural experiments to estimate causal effects of schooling on cognitive abilities the same sample for which biometric decompositions are estimated

- Are the more shared environmental phenotypes more amenable to schooling effects?
Environmental Composites

Parent Survey
1. Low income
2. Low educational attainment
3. Financial problems
4. Public assistance
5. Food insecurity
6. Change in address, occupation, income
7. Father absence
8. Interparental conflict

State Report on Schools
1. Student-teacher ratio
2. Low teacher experience
3. Low Teacher salary
4. Race/ethnicity
5. Economic disadvantage
6. English language learners
7. Student mobility
8. Math standard not met
9. Reading standard not met
10. Poor attendance

American Community Survey
1. Low educational attainment
2. Single motherhood
3. Low occupational status
4. Poverty
5. Recent relocation
6. Short home tenure
7. Home non-ownership
8. Few children
9. Immigrant status
10. Race
11. Ethnicity

1-2: Parent SES
3-7: Cumulative Adversity
8: Interparental Conflict

1-3: Teacher Characteristics
4-7: Student Demographics
8-10: School Performance

1-4: Neighborhood SES
5-8: Residential Instability
9-11: Diversity
Academic Achievement (WJ-III)

• Reading
 – Passage comprehension
 – Word attack
 – Word identification

• Mathematics
 – Calculations
 – Applied problems
Intelligence (WASI-II)

- **Verbal ability**
 - Vocabulary
 - Similarities

- **Visuospatial reasoning**
 - Block Design
 - Matrix Reasoning

- **Full-scale IQ (FSIQ)**
 - $M = 103$, $SD = 13$
Processing Speed

- Letter Comparison
- Pattern Comparison
- Symbol Search

Pattern Comparison:
Classify the pairs as same (S) or different (D) as quickly as possible
Executive Functions

• **Inhibition**
 - Animal Stroop
 - Mickey
 - Stop Signal

• **Switching**
 - Trail-making
 - Local-global
 - Plus-minus

• **Updating**
 - Running memory for letters
 - n-back
 - Keeping track

• **Working Memory**
 - Symmetry span
 - Listening recall
 - Digit span backward
Across EF tasks, children engage a **common set of regions** that overlaps EF networks identified in adults.

\(N = 117 \text{ 8-13 year olds} \)
Integrating Socioecological Measures into Twin Models
Socioecological Measures Account for much of the Shared Environmental Variance in Cognitive Ability and Academic Achievement
Genes Unite Executive Functions in Childhood

Laura E. Engelhardt1, Daniel A. Briley1,2, Frank D. Mann1, K. Paige Harden1,2, and Elliot M. Tucker-Drob1,2

1Department of Psychology and 2Population Research Center, University of Texas at Austin

\textbf{Fig. 1.} Hierarchical multivariate twin model for additive genetic (A), shared environmental (C), and nonshared environmental (E) contributions to performance on executive-function tasks. The numbers on the arrows represent standardized factor loadings. The model controlled for age effects at the level of the first-order factors (Inhibition, Switching, Working Memory, and Updinating). Because the purpose of this analysis was to understand the relative contributions of genetic and environmental influences to individual differences, as distinct from age-related differences, the loadings of the first-order factors have been standardized relative to their age-independent variance. Boldface indicates significant paths, $p < .05$.3
Executive Functions as Index of Genetic Vulnerability

• By middle childhood, individual differences in EF index genetic signal with low environmental “contamination” across domains.

• Prediction from the Classical Nature vs. Nurture perspective: EFs will be highly resistant to schooling effects
Cognitive Phenotypes are Not Interchangeable

• Between-family environmental stratification in child cognition depends on the outcome. Environmental gaps widen as skills become more complex and instruction-dependent.

• No evidence that between-family environmental variation within our sample accounts for individual differences in EFs.

• “Missing environmentality” for reading and math achievement. (Instructional quality? Unmeasured aspect of home environment?)
Overview

I. Introduction to the Texas Twin Project
II. Children’s cognitive and academic skills in environmental context
III. Use natural experiments to estimate causal effects of schooling on cognitive abilities the same sample for which biometric decompositions are estimated
 - Are the more shared environmental phenotypes more amenable to schooling effects?
How Much Does Schooling Influence General Intelligence and Its Cognitive Components? A Reassessment of the Evidence

Stephen J. Ceci
Human Development and Family Studies
Cornell University
Age versus Schooling Effects on Intelligence Development

Sorel Cahan and Nora Cohen
The Hebrew University of Jerusalem

Simulation
Sharp Regression Discontinuity

Age in September

Pre-K
Kindergarten
Fuzzy Regression Discontinuity, Nonrandom “Redshirting” (Much Closer to Reality)

(Black line estimated based on actual grade in Sept)
Fuzzy Regression Discontinuity, Nonrandom “Redshirting” (Much Closer to Reality)

(Green Line = True Function)
“Fuzzy” Discontinuity, no schooling effect

(Graph: Redshirting, Pre-K, Kindergarten, Early Promotion. Green line = True Function. Black line estimated based on actual grade in Sept.)
What if we just select kids within a month of the birthday cutoff (as is often done)?

Note: No Schooling Effect in the Generating model
Solution: “Intent to Treat” (Instrumental Variable Design)

• Stage 1:
 – Create propensity scores for grade solely based on birthday (i.e. age in September) as the independent variable
 • Sigmoid (e.g. logistic) regression of Grade on Age in September

• Stage 2:
 – Use propensity scores for grade (not actual grade!) and age to predict achievement outcomes
No Schooling Effect, Nonrandom “Redshirting”

(Black Line = Biased Approach)
(Orange Line = IV Approach)
Schooling Effect, Nonrandom "Redshirting"

(Black Line = Biased Approach)
(Orange Line = IV Estimate)
Schooling Effect, Nonrandom “Redshirting”

(Black Line = Biased Approach)
(Orange Line = IV Approach)
(Blue Line = IV Inferred Effect)
Goal

• Test for **schooling effects** on the same outcomes for which we have variance decomposition estimates in the exact same sample:
 – Reading*
 – Math*
 – Crystallized Knowledge*
 – Reasoning†
 – Processing Speed†
 – Executive Functions†

* = appreciable shared environment estimate
† = Negligible/nill shared environment estimate
Assigned Grade by Age in September
Grade Completed by Age in September
Distributions of Birth Months for Red Shirted vs. On Time Students

On Time (N=913) Red Shirted/Held Back (N=97)

[Graphs showing the distributions of birth months for on time and red shirted/held back students.]
Verbal IQ by Grade Status

- Red Shirted/Left Back: $M=100.4$, $N=97$
- On Time: $M=104.7$, $N=913$
- Early Placement/Skipped Grade: $M=108.2$, $N=14$
Grade Propensity Scores by Age
Regression Discontinuity: Math Performance

(Red=“Fuzzy” Expectation, on the basis of propensity scores)
(Blue=Expectation under a perfect compliance counterfactual)
Schooling Effect (SD’s per year)

- Abilities, Achievement,
- Executive Functions
Summer Slide: Math Performance

Grade School Summer Break

UT Winter Break (No Data Collection)

(Red=Loess)
(Blue=Connected Linear Spline)
Summer Slide

The chart illustrates the performance of students in various subjects over months from the start of the school year. The x-axis represents months from the start of the school year, ranging from -2 to 8. The y-axis represents performance, ranging from -0.8 to 0.4. The shaded area indicates the summer break period. Different lines represent different subjects:

- Red: Math
- Blue: Reading
- Green: Visual-spatial reasoning
- Orange: Crystallized knowledge
- Pink: Processing speed
- Purple: Executive functioning

The chart shows a decline in performance during the summer break, followed by a recovery period as the school year progresses.
An Apparent Paradox

• Sizable Schooling effects on EF and Speed using school-age cutoff and time-of-year analyses

• No Appreciable Shared environmental effects on either factor (after controlling for age)
Different Methods May Tap Distinct Sets of Causal Influences

• Biometric Variance decomposition tap effects of naturally occurring variation in experience
 – only effects variation in experience that are uncorrelated with genotypes are attributable to environmental factors
 – As has been discussed extensively elsewhere, causal effects of environments that are selected and evoked on the basis of genotype are attributable to the genetic factor

• In contrast school-age cutoff and time-of-year tap near-universal experiences that are close to exogenous and only a matter of timing
Is the Environment Really Impotent in the “Normal” Range Observed in the USA?

Figure 4. Hypothetical threshold model describing relationship between environment and IQ.
Conclusions

• Small (or nil) shared environmental effects on cognitive phenotypes do not correspond to their susceptibility to schooling effects
• Small (or nil) shared environmental on cognitive phenotypes are therefore unlikely to place constraints on the sensitivity of those phenotypes to novel social or educational policies
• Education appears to be the most consistent, robust, and durable method yet to be identified for raising cognitive abilities
Acknowledgements

• Collaborators on the work presented:
 – Laura Engelhardt
 – Margherita Malanchini
 – Stuart Ritchie
 – Paige Harden

• Portions of this research were supported by NIH grants R01HD083613, R01AG054628, R21HD081437, R21AA020588, and R21AA023322. The Population Research Center is supported by NIH grant R24HD042849.
For more on education and intelligence:

How much does education improve intelligence? A meta-analysis

Stuart Ritchie, Elliot Tucker-Drob
Created on: November 07, 2017 | Last edited: November 07, 2017

Policy Change

Gain for 1 year of education (IQ points)

Age at outcome test (years)